4

SmartHub IN

]'1
|
A

I

https://www.smarthub.ai/

TABLE OF CONTENTS

Table of Contents

1 Introduction 3
1.1 APIs . . . 3
1.2 Headers e e e e e 4
1.3 API Version e e e e e e e e 4
1.4 Authentication e 4
1.5 Organizations o e e e e e e e 7
1.6 Device Authenticationo 8
1.7 Restricted Characters e 9

2 Server APIs 11
2.1 Swagger Console e e e e e 11
2.2 Using the Server APIs. e 11
2.3 Server APITypes e e e e e e e e e e 12

3 Edge APIs - Python SDK 14
3.1 Python SDK e e e 14
3.2 Supported Operations e 15
3.3 Best Practices 18

4 Running Campaigns using Agent SDK 20
4.1 Running a Campaign using Default Properties 20
4.2 Running a Campaign in On-Demand Mode 20
4.3 Running a Campaign in HeadlessMode 22
4.4 Approving the OTA Update Phases 22

5 Writing an Adapter using C SDK 24
5.1 DefaultClient in [IoTCAgent Package 24
5.2 Data Structures e e 26
5.3 Functions e e e e 35
5.4 Macro Definitions 50
5.5 Enumeration Types e e 51
5.6 Writing a Client Application using IoTCAgent SDK 53
5.7 Building a Client that uses the [oTCAgent SDK 57
5.8 Running a Client that uses the [oTCAgent SDK 57
5.9 Working with DefaultClient 57
5.10 Using DefaultClient Daemon 58

©2024 SmartHub Inc. INFER™ API Reference Guide Page 2

1 INTRODUCTION

1 Introduction

INFER™’s APIs power its platform for IoT and Endpoint Management. INFER™ has a host
of REST APIs of all of its core features. Behind these APIs is a software layer connecting
and optimizing your edge devices across your enterprise spaces to allow their seamless
lifecycle management.

Using APIs, you can programmatically create, view, edit, and delete various entities such
as:

Devices,
Campaigns,
Alerts,
Notifications,
Groups, and
Users.

1.1 APIs

INFER™ provides APIs for different types of integration as shown below:

Edge / User premise

loT Gateway or Edge Device

Any Application

hosted on cloud or INFER Agent Daemon
On-premise <
INFER Server A Local socket
Instance
(H"-‘ge“ on C_"’“)d or (loTCAgent (SDK) for Python/C 1
n-premise
Adaptors for specific Protocol or Device type

Data Source with loT

BERREE
> e X Q@ B &

loT Protocols: eg, BLE, Modbus, ZigBee, OPC-UA, BacNet, SNMP ...

or other contextual
Data

Connected Things & Devices

1.1.1 Server APIs
Using this set of REST APIs, the Server enables your applications to:

e read data stored in,
e write data into , and
e control actions performed by on your IoT and edge devices.
All Console functionalities are implemented using this same set of REST APIs.

Note: To consume these APIs, you must have inbound HTTPS access to the instance,
regardless of whether it deployed on-premise or in the cloud.

1.1.2 Agent APIs

This is a set of Python Functions provided as an SDK library to enable Edge Adapters
or other applications running at the Edge to inject IoT data into via Agent Daemon. The
SDK library can be consumed by Python, C or other language programs that implement
a particular protocol to interface with devices. For more information, see Edge APIs -
Python SDK.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 3

1 INTRODUCTION

1.2 Headers

INFER™’s REST APIs support several standard and custom HTTP headers, including both
request headers and response headers specific to.

You can use headers to pass parameters and customize options for HTTP requests.
Common headers used include:

e Xx-current-org-id —Enter this header if the user name is available across multiple
organizations.

e HTTP Accept—Indicates the format that your client accepts for the response body.
Possible values are application/json and application/xml . The default value

is application/json .

e HTTP Content-type—Indicates the format of the request body that you attach to the
request. Possible values are application/json and application/xml .

e HTTP Authorization—Provides the OAuth 2.0 access token to authorize your client.
REST API supports the Bearer authentication type.

1.3 API Version

Content-Type: application/json Accept:
application/json;api-version=\<api-version\>

To get the current API version, use the following API:

API /api/versions

Method GET
Sample Response
{
"currentApiVersion": "0.2",
"supportedApiVersions": [
IIO i 1II ,
"0. 2II
]
}

1.3.0.1 Response Parameters

Field Type Description

currentApiVersion string The current API version
supportedApiVersions array of strings List of API versions

1.4 Authentication

Use the following APIs to create and issue an authentication token for a user.

1.4.1 Acquire API Keys

There are two ways to authenticate using 's Server-side APIs.

The recommended method to access server-side APIs is to use API key. For more informa-
tion, see the API Keys chapter in the INFER™ User Guide.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 4

1 INTRODUCTION

1. If you are logging in to INFER™ via SSO or LDAP, you can use an API key generated
from the Console itself. These API keys give you life upto one year and is ideal for
automation or enterprise integration.

Note:
a. For accessing server APIs, the following headers are mandatory: Accept : with
server API version. application/json;apiversion=0.17" .
Header

Authorization : For POST and PUT call methods, specify the only supported content-
type header as application/json .

2. You can also use your local credentials. However, these tokens come with a short life
and need to be refreshed often. The maximum token life is 365 days.

Note: This option is not recommended for enterprise users accessing via SSO or LDAP
integration.

1.4.2 Acquire Token using Credentials

You require a user access token to perform API operations. However, if you already have
an API key which is similar to a token, this is not required.

Authorization : {UserAccessToken}

Header
Authorization : This uses the basic auth technique explained here:

https://inst01.us01.infer.smarthub.ai/openapi/index.html.

SmartHub C
Customers
Smart Cloud
Partners
PNW Manufacturing
Smart Labs
Simulations x-current-org-id
Green World Inc

Safe Spaces Inc.

Healthy Living Inc.

If the user name is available across multiple organizations, enter the following header:
x-current-org-id
API /api/tokens

Method GET

Required Parameters None

©2024 SmartHub Inc. INFER™ API Reference Guide Page 5

https://inst01.us01.infer.smarthub.ai/openapi/index.html

1 INTRODUCTION

Response

{

"accessToken": “string”,
"expiresInSecs": "1543317540",
"accessTokenExpiresAt": "1543317540",
"refreshToken": “string”,
"refreshTokenExpiresAt": "1544519940"

1.4.2.1 Response Parameters

Field Type Description

accessToken string Access token

expiresInSecs long The remaining milliseconds
left for expiry of access
token

accessTokenExpiresAt long The time (in milliseconds)
of the access token's expiry

refreshToken string The replacement token of
the old token

refreshTokenExpiresAt long The remaining milliseconds

left for expiry of new access
token

1.4.3 Issue Access Token Using Refresh Token
API /api/tokens/refresh
Method GET

Required Parameters None
Response

{

"accessToken": "string",
"accessTokenExpiresAt": "1543317540"
"expiresInSecs": 0,

"refreshToken": null

1.4.3.1 Response Parameters

Field Type Description

accessToken string Access token

accessTokenExpiresAt long The time (in milliseconds)
of the access token's expiry

expiresInSecs long The remaining milliseconds
left for the access token's
expiry

refreshToken null The replacement token of
the old token

©2024 SmartHub Inc. INFER™ API Reference Guide Page 6

1 INTRODUCTION

1.5 Organizations

1.5.1 Setting the Current Organization ID

Use this header to set the current organization ID for which you want to run the APIs.

x-current-org-id:\<orgId\>

1.5.2 Listing Organizations

Use the following API to list all organizations in your scope.

API /api/organizations

Method GET

Required Parameters None

Response
{

"pageInfo": {
"totalPages": "string",
"totalElements": "string",

||page||: O,

"pageSize": 0O

I

"tenants": [

{

Ilidll: Ilstringll ,
"name": "string",

"parentId": "string",

"status": "ACTIVE",
"ancestors": [
"string"
]I
"orgId": "string",

"lastUpdatedBy": "string",

"createdBy": "string",
"lastUpdatedTime": "string",
"createdTime": "string",

"updateVersion": 0

1.5.2.1 Response Parameters

Field Type Description
pageInfo string Name of the column
totalPages string The total number of
pages
totalElements string The total number of
elements
page integer The current page
pageSize integer The number of
elements in a page
tenants string Name of the column

©2024 SmartHub Inc.

INFER™ API Reference Guide

Page 7

1 INTRODUCTION

Field

Type

Description

id

name
parentId
status

ancestors

string
string
string
string of arrays

array

The tenant's id

The tenant's name
The tenant's parent
id

The tenant's
present state

The parent

organizations of the
current
organization in the
hierarchy

The organization's
id

Name of person
who last updated
the organization's id
Name of person
who created this
organization's id
The time when this
organization's id
was updated last
The time when this
organization's id
was created

The version number
of the updated
version

orgId string

lastUpdatedBy string

createdBy string

lastUpdatedTime string

createdTime string

updateVersion integer

1.6 Device Authentication

Use the following API to issue device token and device credentials.

1.6.1 Creating Device Credentials

Required Permissions

You must have the Create Device Credential permission to perform this operation.

API api/device-credentials/{id}

Method POST
Input Examples

e JWT NATIVE is a token based authentication where a gateway can be enrolled into

the Server using this one time token.
o Request body: {}
o Path parameter: device id (string)

e PROPERTY NATIVE refers to property based enrollment. The returned token is ig-
nored. For more information, see the Onboarding a Gateway using Property-
based Authentication chapter in the INFER™ User Guide.

o Request body: {"requestParams":"{\"DeviceKey\":\"1234\"}"}
o Path parameter: device id (string)

e TPM NATIVE is TPM based enrollment. For more information, see the Onboarding

a Gateway using TPM-based Authentication chapter in the INFER™ User Guide.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 8

1 INTRODUCTION

o Request body: {"requestParams":"{\"tpm ek\":\"123456\"}"}
o Path parameter: device id (string)

Note: Enrollment flow is defined by the device template for a gateway.

Response
{

"credentials": "string"
}

1.6.1.1 Response Object

Field Type Description

credentials string The device's credentials

1.6.2 Get Device Token

Required Permissions

You must have the Get Device Token permission to perform this operation.

API /api/device-tokens

Header x-device-auth

Enter the device credential that you created in the [Create Device Credential] API.

Method GET

Required Parameters

Field Type Description

id string Device ID

Response
{
"deviceId": "string",
"accessToken": "string"
}

1.6.2.1 Response Parameters

Field Type Description

deviceld string The device's id
accessToken string The access token

1.7 Restricted Characters

The following characters are restricted when creating a template name, device name, cus-
tom property, and metric name.

1.7.1 Template Name

<>%$ () {}

©2024 SmartHub Inc. INFER™ API Reference Guide Page 9

1 INTRODUCTION

1.7.2 Device Name

<>%$ () {}I[]

1.7.3 Custom Property
<>.%%$()A{1}

1.7.4 Metric Name

:{}&"

1.7.5 User Name

e Usernames must begin and end with alphanumeric characters.
e Usernames can contain letters (a-z), and numbers (0-9).

e Usernames can contain zero or one occurrence of a separator (hyphen(-), underscore
(1), or period (.).

e Usernames must not contain the following special characters:
C o~ lE#SSNSX () ([1+=5 >/,
Examples of disallowed usernames:
e ”.pulseuser”
e "pulseuser-”
e “pul.se-user”
e “pulse@user”
e "Ipulseuser”
As a local user, you can:
e choose a username 1-50 characters long.

e use alphanumeric values along with one of the following special characters listed

below:
o underscore () ,
o hyphen (-) ,and
o period (.)

As an SSO/LDAP user, your username must contain only one of the following special char-
acters listed below:

e underscore (_) ,
e hyphen (-) ,and

e period (.)

All other special characters are disallowed.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 10

2 SERVER APIS

2 Server APIs

The INFER™ Server gives you this set of REST APIs to enable your applications to read
data stored in , write data into and control actions performed by on your IoT and edge
devices. All INFER™ Console (Console) functionalities are implemented using this same
set of REST APIs.

Note: To consume these APIs, you must have inbound HTTPS access to the INFER in-
stance, regardless of whether it deployed on-premise or in the cloud.

2.1 Swagger Console

INFER™’s Server APIs are OpenAPI compliant and provide the Swagger Console as part
the Server instance.

The Swagger Console provides detailed documentation for all RESTful APIs offered by
the Server. It also provides the ability to invoke the APIs interactively with a live server
connection. For more information about Swagger Console, see swagger.io.

To access the Swagger Console, point your browser to
https://<INFER-SERVER-FQDN>/openapi/index.html

where <INFER-SERVER-FQDN> is the Fully Qualified Domain Name (FQDN) or IP address
of the Server instance.

2.2 Using the Server APIs

To invoke APIs on the Server, you need to be authenticated first. This is done by invoking
the following APIs in sequence.

1. Ensure that the Servers drop-down list at the top-left of the page is showing the
correct FQDN for the instance you want to connect to.

2. Click Authorize at the top right corner to perform BasicAuth to the Server.

3. Click Close once you are logged in.

BasicAuth (http, Basic)

Authorized

Use your regular Pulse server credentials to access Acquire Token AP mentioned below and acquire
Bearer Auth token.

Username: iNTerUser

Password: FHEFHEE

Logout l Close]

4. Next, get the API versions supported by the server by invoking API Version call.
For all subsequent calls, ensure that a supported version is provided in the Accept

header. In the Swagger Console, the api-version value is automatically added to the
header, but when you are invoking the APIs, you must send this parameter in the
header.

5. Acquire an AccessBearer token that you can use for all subsequent calls in the ses-
sion. You can do this by invoking the [Acquire Token] call. The response will provide
two tokens:

® accessToken
e refreshToken .

©2024 SmartHub Inc. INFER™ API Reference Guide Page 11

https://swagger.io

2 SERVER APIS

6. Authorize all other REST calls using the value of accessToken as BearerAuth token.
Click the Open Lock icon for any of the REST APIs to open the popup and enter the

value of accessToken returned by Acquire Token call.

BearerAuth (http, Bearer)

Use Acquire Token API using Basic Auth and get accessToken to be used in other authenticated APIs.

Value:

oHD3AMfOIOFNRIPFFg4t6Bg

6. Additionally and optionally, you can set the scope of the APIs for a particular
sub-organization. This can be done by providing orgId as a header in the

CurrentOrgIdHeader by opening the popup as mentioned above. If there’s no value
provided, the scope of organization is automatically identified by the server from
the BearerAuth token. 0rgId can be found in the organization list which could be
retrieved from the [List Organizations] API.

CurrentOrgIdHeader (apiKey)

Mame: x-current-org-1id
In: header

Value:

b-476b-800e-005004c4a931

(e) []

2.3 Server API Types

This section provides a high-level overview of the Server APIs along with some sample use
cases.

e Device Management - APIs for performing operations on devices, device templates,
device authentication, device commands, and files.

e Campaign Management - Create, modify, delete, start, stop and other operations
on Campaigns. Create, delete and management of Packages.

e Alerting - APIs to get, create, update, and delete alerts and alert definitions.

e Identity & Access Management (IAM) - APIs to perform Tenant management, Sub-
org management, Role management, User management, and Group management op-
erations.

o Organization Management - Create, view, update, and delete an organization.

[e]

User Management - APIs to create, fetch, update, and delete users.

[e]

Role Management - APIs to create, fetch, update, and delete roles.

o

Group Management - APIs to create, fetch, update, and delete user groups.

[e]

Permission Management - API to fetch permissions.

[e]

Organization Settings - APIs to view and update your organization settings.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 12

2 SERVER APIS

o Password Management - APIs to generate a password recovery link and reset
the password.

o Token Management - APIs to generate access and refresh tokens.

e Notification - APIs for Notification Destinations, Notification Definitions, and Notifi-
cation Instances.

o Notification Definition - APIs to create, update, get, and delete notification
definitions.

o Notification Instances - APIs to retrieve notification instances.

o System Notifications - APIs to view system notifications. System notifications
are generated when there is a system downtime. The notifications are sent to
the users through email or displayed on the Console.

e Certificate Management - APIs to create, update and delete certificates.

e Advanced Search - APIs to create, get, update, and delete a filtered device list.
e Metric APIs - APIs to query metrics.

e Audit APIs - APIs to get audit logs, get audit types, and get entity types.

e Space APIs - APIs to create, edit, delete, and assign/unassign parent spaces.

e Space Template APIs - APIs to create, clone, edit, delete, and assign parent space
templates.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 13

3 EDGE APIS - PYTHON SDK

3 Edge APIs - Python SDK

This section provides information about working with the Agent's SDKs.

The Agent is a component that resides in the Gateway, and connects the INFER™ services
to run commands and send operational metrics to IoTC services.

Note: The Agent makes an outbound connection to the Server on port 443 (HTTPS).

The Agent's SDK called as IoTCAgent exposes APIs on the gateway which Third-party
applications can use to interact with .

3.1 Python SDK

All the operations you can use are part of the InferSession class. Sample adapter covers
all such operations. However, sample adapter is just a reference on how to use the SDK.
It will not run on all gateways since you will have different templates in scope than what
is mentioned in the sample adapter.py.

3.1.1 Requirements

e Totcagent installed, and running.
e Python3 and pip3 installed.

3.1.2 Installation steps

1. Navigate to pythonSDK folder
2. Run -:
i. Linux: sudo bash install.sh

ii. Windows: .\install.ps1 (run the command using cmd/powershell window with Ad-
ministrator privileges)

3.1.3 Configuration

To use the SDK, a mandatory configuration file adpater config.json has to be present in
the same working directory as the adapter code. Following are the major sections in the
configuration:

"logging":{
"level": "INFO"
}

You can set the log level of logs of the adapter and SDK. Log levels can be the following:
e DEBUG
e INFO

WARNING

ERROR

CRITICAL

"c-sdk": {
"adapterName" : "sample-adapter"
“number of init session retries": 100,
“retry period seconds": 60,
"inter process communication": {
"ipc_mode": "TCP",

©2024 SmartHub Inc. INFER™ API Reference Guide Page 14

3 EDGE APIS - PYTHON SDK

“tcp_port": 5000

}
}
Field Type Description
c-sdk Top level Name of the SDK
adapterName string The name of the
adapter
number of init integer The number of

times adapter will
try a reconnection
to the agent in case
the socket session is

_session retries

lost
retry period integer The duration after
seconds which a retry is
= attempted
inter process array Specifies whether
_ communication ipcmode is “UDS”

or “TCP”. On Linux,
default agent ipc is
UDS. On Windows,
default agent ipc is
TCP on port 5000.

The SDK can potentially communicate to the agent via various means. For now, native
SDK (C SDK) is being used underneath to communicate with the agent via inter process
communication.

Apart from the aforementioned sections, you can add more sections to suit the adapter's
needs. You can also use additional custom configuration files to configure the adapter.

3.1.3.1 InferSession The Adapter communicates to the agent by opening a session
using the class InferSession

from infer adapter sdk.session import InferSession infer session =
InferSession(application id=\"com.smarthub.axis.adapterl\")

e application id isaunique string which identifies the adapter with the agent. There
would be few adapters talking to agent on a Gateway.

Note: Keep the application id unique among application ids of all adapters com-
municating with a particular agent.

3.2 Supported Operations
3.2.1 Get Gateway Device

infer session.get gateway device()

3.2.2 Sending Properties

Multiple properties can be sent using the method:

©2024 SmartHub Inc. INFER™ API Reference Guide Page 15

3 EDGE APIS - PYTHON SDK

infer session.send properties(device id, {"abc": "def", "123":
II456II})

3.2.3 Sending Metrics

Metrics can be sent using:

infer session.send metric(device id, metric name="testint",
metric_type=Device.MetricType.INTEGER, metric value=1)

infer session.send metric(device id, metric name="testdouble"”,
metric_type=Device.MetricType.DOUBLE, metric value=2.3)

infer session.send metric(device id, metric_name="teststring",
metric_type=Device.MetricType.STRING, metric value="abc")

infer _session.send metric(device id, metric name="testboolean",
metric type=Device.MetricType.BOOLEAN, metric value=True)

e A Metric can be sent along with an optional timestamp. In case no timestamp is
provided, it would default to current time stamp.

infer session.get ginfer session.send metric(device id, metric
name="testint", metric type=Device.MetricType.INTEGER, metric
value=1, timestamp milli sec=<timestamp in
milliseconds>)ateway device()

3.2.4 Enrolling a pre-registered Gateway

A pre-registered gateway has to be enrolled after the agent is installed on the same. There
are multiple ways to enroll (and register) a gateway on the edge. One of the ways sup-
ported by this SDK is enrolling using an authentication token. This token can be generated
on once the gateway is registered.

infer_session.enroll gateway pre registered(authentication token)

3.2.5 Registering and Enrolling a Device/Thing

e A registered device (registered in) can be enrolled on the edge using:
registered device = next(
(device for device in infer session.devices if

(device.enrollment state ==
Device.EnrollmentState.REGISTERED)),

None)
infer_session.enroll registered thing(registered
device.device id).

e A device can also be both registered and enrolled at the edge:

thingl = infer session.enroll thing(device name="thingl",
template name="testDevice", parent device id=gateway
device.device id)

print(f"thingl's deviceld: {thingl.device id}")

©2024 SmartHub Inc. INFER™ API Reference Guide Page 16

3 EDGE APIS - PYTHON SDK

3.2.6 Un-enrolling a Device

infer _session.un _enroll device("“<device-id>")

3.2.7 Refreshing Device Data

All the data related to devices connected to the Gateway can be refreshed from the Server:

infer session.refresh devices()

Note: This command will cause a round-trip to INFER™ Server.

3.2.8 Callbacks

Command Callbacks can be registered, which upon a command trigger from would be
called back. Signature of callback function:

def callback example reboot(infer session: InferSession,
command: Command) -> CommandResponse:

yaaay = f"I'm a callback. yaay! got called. command
name: {command.name}"

logging.info(yaaay)
infer session.send properties(infer session.get
gateway device().device id, {"abc": "def"})

reboot logic

print(yaaay)
for arg in command.arguments:

print(arg.name + " " + arg.value)

return CommandResponse with command result as :
CommandResult.SUCCESS or CommandResult.FAILURE.

CommandResponse expects an enum CommandResult, and an
optional custom message.

In case the command result is deferred, return
CommandResponse (CommandResult.UNKNOWN) .

For posting the result of a deferred command, do:

infer session.post command result(command id,
CommandResponse (CommandResult.SUCCESS, "custom message") #
or CommandResult.FAILURE

return CommandResponse(CommandResult.SUCCESS, "custom
message")
e To register a command callback:

infer_session.register callback(command name="reboot",
callback function=callback example reboot)

©2024 SmartHub Inc. INFER™ API Reference Guide Page 17

3 EDGE APIS - PYTHON SDK

- To post the result of a deferred command, do the following:

infer session.post command response(command id,
CommandResponse (CommandResult.SUCCESS, "custom message")
or CommandResult.FAILURE

To post a command's result asynchronously, you need the command_id, which you can
access from the command object as command.id .

3.2.9 Uploading a File

You can upload any file on the local system to the Server. Device_id is optional; however,
if device id is not provided, the file will be associated with the Gateway's device id .

infer _session.upload file(file path="<path-of-the-file
-onthe-system>", device id="<device id>")

3.2.10 Adapter Sleep using SDK Function

You can use the sleep and process command utility to put the THING (adapter) to sleep
and execute the commands sent to it in the background, in a single thread.

sleep_and process command(infer session, sleep time sec=60,

process command interval sec=15)

e infer session stands for the object of the InferSession class.
e sleep time sec is the value set for the duration of the adapter's sleep cycle, and
which also denotes the frequency of sending metrics and properties.

e process command interval sec is the value set for the adapter's poll frequency to
fetch the commands from the agent and execute them.

3.2.11 Closing the Session

After file upload you can close the session once the work is done.

infer session.close session()

3.3 Best Practices

3.3.1 Debugging and Logging

Often the Adapters run on the edge Gateways with limited remote access facility. To debug,
it is paramount to write meaningful logs. INFER™ can pull log files from the Gateway on
demand. If you have access to the actual Gateway system, the logs could be visualized
from logging utilities like:

e journalctl
e syslog (Linux), or

e event log (Windows).

3.3.2 Configuration

Often, adapter deployments happen on multiple Gateways catering to a group of devices
each. In order to affect configuration on multiple adapters/devices at once, custom prop-
erties come handy.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 18

3 EDGE APIS - PYTHON SDK

INFER™ allows you to update custom properties in bulk at once. Configurations like
polling period , etc can be done using the custom properties rather than using config-
uration files.

3.3.3 Reliability

Each adapter runs as a service on the Gateway along with the agent service. To prevent
the adapter processing exiting, use exception handling functions of adapter utils.py

3.3.4 Loop Structure

Most adapters need single-threaded execution. If the command-callback utility is used,
make sure to run get-commands at frequent intervals to poll commands from the agent.
For an example, see the sample adapter.

Note: You can use multi-threading/actor-frameworks as well.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 19

4 RUNNING CAMPAIGNS USING AGENT SDK

4 Running Campaigns using Agent SDK
This chapter details the prerequisites and steps to run over-the-air (OTA) updates on a
Gateway, using the Agent SDK.
Campaign services use the following properties from the IoTCAgent:
e commandFetchIntervalSeconds : The IoTCAgent makes periodic get-command re-
quests to the micro services for every commandFetchIntervalSeconds expiry.

e You can configure the property value through the Device Template tab in the Con-
sole.

By default, the IoTCAgent runs with the following property values:

commandFetchIntervalSeconds=30
manifestExecution=ENABLE

When you start the IoTC Agent with default properties, it requests for command instruc-
tions from the Server by calling the get-command every 30 seconds.

Note: For each lifecycle phase, the IoTCAgent receives a command from the Server to
perform the download, execute, and activate operations.

4.1 Running a Campaign using Default Properties

Perform the following steps to run an OTA update for the IoTCAgent using default prop-
erties.

e Using the package-cli tool, perform the following steps:

1. Create an IoTC Package. For more information, see Using Package Manage-
ment CLI to Register Multiple Devices chapter in the INFER™ User Guide.

2. Upload the IoTC Package to the repository. Alternatively, use the Console to up-
load to the repository. For more information, see Uploading the IoTC Package
chapter in the INFER™ User Guide.

e Enroll devices.

1. Create a campaign using a distribution select query and the packages that you
uploaded.

2. Start the campaign.

The IoTCAgent auto-polls the command instructions every 30 seconds. The campaign

states flow from INITIALIZED to COMPLETED after a series of get-commands calls to the
Campaign Server.

4.2 Running a Campaign in On-Demand Mode

Perform the following steps to run an OTA update for the IoTCAgent in the On-Demand

mode, that is, with the commandFetchIntervalSeconds property is setto 0 . This prop-
erty value is defined in the device template.

1. In the specification file, set the value of the headlessExecution execution property
to false .

2. Using the package-cli tool, perform the following steps:
i. Create an IoTC Package.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 20

4 RUNNING CAMPAIGNS USING AGENT SDK

ii. Upload the IoTC Package to the repository. Alternatively, use the INFER™ Con-
sole to upload to the repository.

3. Set the value of the commandFetchIntervalSeconds to @ when creating the device
template.

commandFetchIntervalSeconds = 0

4. Enroll the device.

5. Create a campaign using a distribution select query and the packages that you up-
loaded while creating the campaign.

6. Start the campaign.
The IoTCAgent invokes the get-commands when initiated from the DefaultClient
binary.

The sample workflow below outlines the different states of the Gateway during an OTA
update. The state of the Gateway is INSTANTIATED when the OTA campaign starts.

4.2.1 Sample Workflow

1. Invoke the get-commands to call from the DefaultClient or an Agent SDK exten-
sion. The state of the Gateway changes to INVENTORY UP TO DATE .

2. Invoke the get-commands to call from the DefaultClient or an Agent SDK exten-
sion. The state of the Gateway changes to WAITING FOR * APPROVAL .

In the WAITING FOR * APPROVAL state, schedule the next state. For example:

DefaultClient schedule --type=download --
campaignid=<campaign id>

DefaultClient schedule --type=download --
campaignid=<campaign id> --start-time=0 --end-time=0

DefaultClient schedule --type=download --
campaignid=<campaign id> --start-time=5000 --end-time=80000

Based on the campaign scheduled time, the state of the device changes from
SCHEDULED DOWNLOAD to WAITING FOR DOWNLOAD .

3. Invoke the get-commands to call from the DefaultClient or an Agent SDK ex-
tension. The Gateway starts downloading the package and the state of the device
changes from DOWNLOADING to DOWNLOAD COMPLETE .

4. Invoke the get-commands to call from the DefaultClient or the Agent SDK exten-
sion. The state of the Gateway changes to WAITING FOR EXECUTION APPROVAL .

Here, you can schedule a start and end time for running the campaign using the
following command:

DefaultClient schedule --
type=<download|execution|activation> --

campaignid=<campaign Id> [--start-time=<start time window> - -
end-time=<end time window>]

For example:

DefaultClient schedule --type=execution --
campaignid=<campaign id>

©2024 SmartHub Inc. INFER™ API Reference Guide Page 21

4 RUNNING CAMPAIGNS USING AGENT SDK

DefaultClient schedule --type=execution --
campaignid=<campaign id> --start-time=0 --end-time=0

DefaultClient schedule --type=execution --
campaignid=<campaign id> --start-time=5000 --end-time=80000

Based on the campaign scheduled time, the state of the device changes from
SCHEDULED EXECUTION to WAITING TO EXECUTE .

Here, you can schedule a start and end time for activating the campaign using the follow-
ing command:

DefaultClient schedule --
type=<download|execution|activation> --

campaignid=<campaign Id> [--start-time=<start time window> --
end-time=<end time window>]

DefaultClient schedule --type=activation --
campaignid=<campaign id>

DefaultClient schedule --type=activation --
campaignid=<campaign id> --start-time=0 --end-time=0

DefaultClient schedule --type=activation --
campaignid=<campaign id> --start-time=5000 --end-time=80000

Based on the campaign scheduled time, the state of the device changes from
SCHEDULED ACTIVATION to WAITING TO ACTIVATE .

Note: Contact your Device Administrator or Campaign Administrator if the state of
the Gateway changes to one of the following states: - DOWNLOAD FAILED - EXECU-
TION FAILED - ACTIVATION FAILED

4.3 Running a Campaign in Headless Mode

This section lists the prerequisites for running a campaign for the IoTCAgent in Headless
Mode.

e Run the IoTCAgent with the manifestExecution property setto ENABLE :

manifestExecution=ENABLE

On any campaign, the get-commands call ensures thatthe OTA updates are auto-delivered

to the IoTCAgent. The get-commands calls from the IoTCAgent listens to the Campaign
commands and the campaign downloads, executes, and activates updates.

4.3.1 Monitoring Campaign Progress

To monitor the progress of a campaign on the gateway, set the agentLogLevel to 6 in
the iotc-agent.cfg file. You can then monitor the system logs to view the progress of the
campaign using tools such as journalctl -u or iotc-agent -f .

4.4 Approving the OTA Update Phases

Depending on the IoTCAgent configuration and the package property for headless exe-
cution, there are check points in the device or gateway that may require an approval for
the campaign to run.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 22

4 RUNNING CAMPAIGNS USING AGENT SDK

You can configure your OEM or SI application to use these checkpoints to schedule a
maintenance window for updates, or for approving the campaign to run the updates.

You can monitor the device or gateway's campaign progress from the Campaigns tab in
the Console. To view the progress of the campaign, select the campaign from the list and
click the Devices tab.

Note: The default interval for the IoTCAgent to fetch new commands from the Server is
30 seconds. You can change the interval value through the Device Templates settings in
the Console.

Use the following commands to configure the campaign execution settings using the
IoTCAgent SDK or the IoTCAgent CLI:

e After the campaign reaches the Waiting for Download Approval state:
DefaultClient schedule --type=download --
campaignid=<campaign Id>
Note: Copy the campaign ID from the Campaigns page of the Console.
e After the campaign reaches the Waiting For Execution Approval state:

DefaultClient schedule --type=execution --campaignid=<campaign Id>

e After the campaign reaches the Waiting For Activation Approval state:

DefaultClient schedule --type=activation --campaignid=<campaign Id>

©2024 SmartHub Inc. INFER™ API Reference Guide Page 23

5 WRITING AN ADAPTER USING C SDK

5 Writing an Adapter using C SDK

This section provides information about writing an adapter using the Agent's C SDK.

The C SDK enables various other device-specific Adapters to interact with the Agent run-
ning at the Edge.

5.1 DefaultClient in IoTCAgent Package

The IoTCAgent package contains a directory that carries the source code of the
DefaultClient binary file and a makefile to build your client. You can modify this
source code according to your requirement.

The IoTCAgent package also contains a wrapper script to run the DefaultClient . The
iotc-agent/example/directory contains the following files:

clientDefaultClient.c
DefaultClient.h
DefaultClientDaemon.c
base64.c

Makefile

5.1.1 Send Metrics API Example

The following client program demonstrates the use of the Send Metrics API:

#include
#include
#include
#include
#include
#include
#include

#include

<errno.h>
<stdio.h>
<stdlib.h>
<string.h>
<sys/time.h>
<unistd.h>
<sys/sysinfo.h>

"iotcAgent.h"

#define TEST CLIENT ID "com.agent.test.metric"
#define MEM USAGE "Memory-Usage"

#define CLIENT TIMEOUT 30000

©2024 SmartHub Inc. INFER™ API Reference Guide

Page 24

5 WRITING AN ADAPTER USING C SDK

static uint64 t GetTimeStampMs (void)

{

struct timeval timeVal = {.tv sec = 0, .tv usec = 0};
uint64 t timeStamp;

gettimeofday(&timeVal, NULL);

timeStamp = (timeVal.tv sec * 1000ULL) + (timeVal.tv usec / 1000ULL);

return timeStamp;

int main(int argc, char *argv([])

{

IotcSession *session;
IotcApplicationId clientAppId;
struct sysinfo si;

double memUsage;

IotcMetric *memMetric;
TotcGetResponse getResponse;
int status;

if (argc '= 2) {
printf("Usage: %s <deviceId>\n", argv[0]);
return 1;

}

strncpy(clientAppId.id, TEST CLIENT ID, sizeof clientAppId.id);

session = Iotc Init(&clientAppId);

if (session == NULL) {
printf("Iotc Init() failed");
return -1;

memMetric = malloc(sizeof (*memMetric) + sizeof (IotcDoubleValue));
strncpy(memMetric->deviceld.id, argv[1],
sizeof memMetric->deviceld.id);

memMetric->deviceld.id[sizeof memMetric->deviceld.id - 1] = '\0';
strncpy(memMetric->name, MEM USAGE, sizeof memMetric-=>name);
memMetric->name[sizeof memMetric->name - 1] = ‘\0';

memMetric->type = IOTC METRIC DOUBLE;

while (1) {
if (sysinfo(&si) < 0) {
printf("Error reading sysinfo\n");
break;

©2024 SmartHub Inc. INFER™ API Reference Guide Page 25

5 WRITING AN ADAPTER USING C SDK

memUsage = (double) (si.totalram - si.freeram) *

(double) 100 / (double) si.totalram;

printf("mem: total=%ld free=%ld\n", si.totalram, si.freeram);
memMetric->doubles[0].ts = GetTimeStampMs () ;
memMetric->doubles[0].value = memUsage;

Iotc SendMetric(session, memMetric);

status = Iotc_GetResponseByType
(session, IOTC SEND METRIC, CLIENT TIMEOUT, &getResponse);
if (status == -1) {
fprintf(stderr, "Failed receiving send metric response\n");

}
Iotc FreeGetResponse(&getResponse) ;
sleep(5);

}

free(memMetric) ;

Iotc Close(session);
return 0O;

5.2 Data Structures
5.2.1 IotcApplicationld
IotcApplicationId represents the application identifier.

Application identifier is any string with a maximum length of IOTC APP ID SIZE - 1 . It

is used to identify an application uniquely during an exchange of data between the edge
application and the server side application. Use the reverse domain name notation, such
as ai.smarthub.iotc.agent

Data Fields
e Actual characters of the identifiers:
char id[IOTC_APP_ID SIZE]

5.2.2 IotcAllowedMetricInfo

Stores the allowed metric information.
e Name of the metric:
char metricName[IOTC METRIC NAME SIZE]

e Type of metric:

IotcMetricType metricType

5.2.3 IotcAllowedMetricSet

Set of allowed metrics of a device.
Data Fields

e Size of the allowed metric set:

©2024 SmartHub Inc. INFER™ API Reference Guide Page 26

5 WRITING AN ADAPTER USING C SDK

size t size
e Set of allowed metrics:

IotcAllowedMetricInfo * allowedMetricInfo

5.2.4 IotcBooleanValue
IotcBooleanValue represents the boolean type metric data point.
Data Fields

e time t ts

e unsigned char value

5.2.5 IotcCampaignCallbacks
IotcCampaignCallbacks represents a collection of campaign callback functions.
Data Fields
e Update inventory info callback function:
IotcUpdateInventoryInfoCb* IotcCampaignCallbacks::inventoryInfoCb
e Pre-download callback function:
IotcCampaignPreDownloadCb * IotcCampaignCallbacks::preDownloadCb
e Pre-execution callback function:
IotcCampaignPreExecutionCb * IotcCampaignCallbacks::preExecutionChb
e Execute callback function:
IotcCampaignExecuteCb * IotcCampaignCallbacks: :executeCb
e Pre-activate callback function:
IotcCampaignPreActivationCb * IotcCampaignCallbacks::preActivationCb
e Activate callback function:
IotcCampaignActivateCb * IotcCampaignCallbacks::activateCb
e Download progress callback function:
IotcCampaignDownloadProgressCb * IotcCampaignCallbacks::downloadProgressCh
e State change callback function:

IotcCampaignStateChangeCb * IotcCampaignCallbacks::stateChangeCb

5.2.6 IotcCampaignld

IotcCampaignIdIotcCampaignId represents the campaign identifier. Campaign identifier

is any string with a maximum length of IOTC UUID SIZE - 1 . Itis provided by the Server
as a response to an agent API or server API, or through campaign callbacks.

A campaign identifier could be in the GUID format such as
123e4567-e89b-12d3-a456-426655440000 , or any string such as
5b1656704cedfd000626bcaa .

Data Fields
e Actual characters of identifiers:
char id [IOTC_UUID SIZE]

©2024 SmartHub Inc. INFER™ API Reference Guide Page 27

5 WRITING AN ADAPTER USING C SDK

5.2.7 IotcCampaignScheduleTimeWindow

IotcCampaignScheduleTimeWindow represents the campaign time window.

Contains the begin and end date and time for scheduling in the timestamp format ex-
pressed in epoch time. For example:

beginTime - Stamp : 1534855979, endTimeStamp : 1534856979
Data Fields

e Beginning timestamp for the time window:
time t IotcCampaignScheduleTimeWindow: :beginTimeStamp
e Ending timestamp for the time window:

time t IotcCampaignScheduleTimeWindow: :endTimeStamp

5.2.8 IotcClientConfig

IotcClientConfig represents client configuration SDKs.

Contains the begin/end date and time for scheduling in the timestamp format expressed
in epoch time. For example:

beginTime - Stamp : 1534855979, endTimeStamp : 1534856979
Data Fields
IotcApplicationId appId

IotcClientLoglLevel logLevel

5.2.9 IotcCommand
Command structure to hold details about a command message received from the server.
Data Fields
e Friendly name of the command:
char IotcCommand::name[IOTC NAME MAX SIZE]
e Command identifier generated by the server:
char IotcCommand::id[IOTC UUID SIZE]
e Device identifier for the targeted device. This is an optional field:
IotcDevicelId IotcCommand: :deviceld
e Absolute path to the executable. This is an optional field:
char IotcCommand::execPath[IOTC PATH MAX]
e Number of command arguments:
size t IotcCommand::numArgs
e List of arguments for the command:

IotcCommandArg * args

©2024 SmartHub Inc. INFER™ API Reference Guide Page 28

5 WRITING AN ADAPTER USING C SDK

5.2.10 IotcCommandArg

Command argument structure.

Data Fields
e The value type:

IotcCommandArgValueType IotcCommandArg::type
e Name of the argument:

char IotcCommandArg::name[IOTC NAME MAX SIZE]
e Device identifier for the targeted device. This is an optional field:

IotcDevicelId IotcCommand: :deviceld
e Number of items in the value array:

size t IotcCommandArg::numValues

e Value array of the argument:

union { int64 t * intValues double * doubleValues char ** strValues };

5.2.11 IotcCommandResponse

Command response to hold the response received for a command.
Data Fields

e Error message to be sent to the server:

char IotcCommandResponse::message[IOTC PAYLOAD MAX SIZE]

5.2.12 IotcDevice

(Deprecated) Represents a device entity.
Data Fields

o TotcDeviceld deviceld

e IotcDeviceType type

5.2.13 IotcDeviceDetails

Represents the device details.

Data Fields
e Name of the device:

char IotcDeviceDetails::name[IOTC NAME MAX SIZE]
e Name of the device template:

char IotcDeviceDetails::deviceTemplate[IOTC NAME MAX SIZE]
e Organization ID for the Device:

char IotcDeviceDetails::deviceOrgId[IOTC UUID SIZE]

©2024 SmartHub Inc. INFER™ API Reference Guide

Page 29

5 WRITING AN ADAPTER USING C SDK

5.2.14 IotcDeviceld

IotcDeviceld represents the device identifier.
Data Fields
char id [IOTC_UUID SIZE]

5.2.15 IotcDeviceData

IotcDeviceData represents a device entity.
Data Fields

e IotcDeviceId deviceld

e TotcTemplateId templateld

e TotcDeviceld parentId

e TotcDeviceId parentGatewayId

e TotcDeviceType type

e TotcEnrollmentState enrollmentState

e char deviceName [IOTC NAME MAX SIZE]

e char templateName [IOTC NAME MAX SIZE]
e IotcKeyValueSet systemProperties

e TotcKeyValueSet customProperties

e IotcAllowedMetricSet allowedMetrics

5.2.16 IotcDeviceSet

Represents the set of devices.
Data Fields

e TotcDevice*device

e size t used

e size t size

5.2.17 IotcDeviceDataSet
5.2.18 IotcDoubleValue

IotcDoubleValue represents the float type metric data point.
Data Fields

e time t ts

e double value

©2024 SmartHub Inc. INFER™ API Reference Guide Page 30

5 WRITING AN ADAPTER USING C SDK

5.2.19 IotcEnrollmentCredentials

IotcEnrollmentCredentials represents the enrollment credentials.
Data Fields

e authToken contains the credentials required by the enrollment provider:

char IotcEnrollmentCredentials::authToken[IOTC PAYLOAD MAX SIZE]

5.2.20 IotcEnrollmentData

IotcEnrollmentData represents the enrollment data. Enrollment data contains the type of
enrollment and the required data for the enrollment.

Data Fields

e parentId is the device ID of the gateway device that the device connects to. For
the root gateway device, the parent ID must be empty:

IotcDeviceld IotcEnrollmentData::parentId

e deviceld must be set for the IOTC PRE REGISTERED type:
IotcDeviceld IotcEnrollmentData::deviceld

e deviceDetails must be set for the IOTC NOT REGISTERED type:

IotcDeviceDetails IotcEnrollmentData::deviceDetails

5.2.21 IotcEnrollmentRequest

IotcEnrollmentRequest represents the enrollment request structure.

Data Fields

IotcEnrollmentData IotcEnrollmentRequest: :data

e Data contains the required enrollment data:

union

{

TotcEnrollmentCredentials enrollmentCredentials
IotcUserCredentials userCredentials

}
IotcEnrollmentCredentials IotcEnrollmentRequest::enrollmentCredentials

e enrollmentCredentials must be set for the IOTC PRE REGISTERED type.
IotcUserCredentials IotcEnrollmentRequest::userCredentials

e userCredentials must be set for the IOTC NOT REGISTERED type.

5.2.22 TIotcEnrollmentResponse

IotcEnrollmentResponse represents the enrollment response.

Data Fields

IotcDeviceld deviceld

IotcDeviceld parentId

©2024 SmartHub Inc. INFER™ API Reference Guide Page 31

5 WRITING AN ADAPTER USING C SDK

5.2.23 IotcGetResponse

IotcGetResponse represents the GetResponse sent from the agent to the SDK.
Data Fields
e uint64 t messageld

e TotcGetResponseMsgType type

e void * response

5.2.24 IotcInt64Value

IotcInt64Value represents the integer type metric data point.
Data Fields

e time t ts

e int64 t value

5.2.25 IotcKeyValue
IotcKeyValue represents a key value pair.
Data Fields

e char key [IOTC NAME MAX SIZE]

e char value [IOTC VALUE MAX SIZE]

5.2.26 IotcKeyValueSet

IotcKeyValueSet contains an array of device properties used. It represents the number of
current keyValue set size and the capacity of the keyValue set.

Data Fields
e TotcKeyValue*keyValue

e size t used

e size t size

5.2.27 IotcMetric

IotcMetric represents the metric data point to be sent to the agent.
Data Fields
e IotcMetricType type

e TotcDeviceld deviceld

e char name [IOTC_METRIC NAME SIZE]

union

{
struct IotcStringValue strings [0]
struct IotcIntegerValue integers [0]
struct IotcFloatValue floats [0]
struct IotcBooleanValue bools [0]

)i

©2024 SmartHub Inc. INFER™ API Reference Guide Page 32

5 WRITING AN ADAPTER USING C SDK

5.2.28 IotcMetricResponse
IotcMetricResponse represents the metric response.
Data Fields

e Metric status of type:
IotcMetricResponseStatus

e Metric information that is received from agent:

metric

5.2.29 IotcNotificationDefinitionld
IotcNotificationDefinitionId represents the notification definition identifier.
Data Fields
e Holds the actual characters of the identifiers:
char IotcNotificationDefinitionId::id[IOTC UUID SIZE]

5.2.30 IotcNotificationResponse

IotcMetricIntvlResponse represents the notification response sent from the server to the
client.

Data Fields
e Notification definition identifier:
IotcNotificationDefinitionId IotcNotificationResponse::definitionId
e Notification instance identifier:
IotcNotificationId IotcNotificationResponse::notificationId
e The payload byte size:
char IotcNotificationResponse: :payload[IOTC PAYLOAD MAX SIZE]
e Status flag:

int IotcNotificationResponse: :status

5.2.31 IotcPackageld

IotcPackageId represents the package identifier string.The package identifier is a string
with a maximum length of IOTC UUID SIZE - 1 . It is in the GUID format such as,
08732222-1234-12d3-a456-426655440000 .

Data Fields
e Holds the actual characters of the identifiers:
char IotcPackageId::id[IOTC UUID SIZE]

©2024 SmartHub Inc. INFER™ API Reference Guide Page 33

5 WRITING AN ADAPTER USING C SDK

5.2.32 IotcPropertySet

(Deprecated) IotcPropertySet represents information about the properties that are cur-

rently set.
Data Fields
e Contains an array of devices used:

IotcDeviceId deviceld

e Contains an array of properties used:
IotcProperty * property

e Represents the number properties currently set:

size t used
e Represents the capacity of the property set:

size t size

5.2.33 IotcSendNotificationRequest

IotcSendNotificationRequest represents the send notification request sent from the client

to the server.
Data Fields
e Notification definition identifier:
IotcNotificationDefinitionId IotcSendNotificationRequest::definitionId
e Source of the request:
TotcApplicationId IotcSendNotificationRequest::entityId
e Array of key value pairs:
IotcKeyValue* IotcSendNotificationRequest: :keyValues
e Number of key value pairs:

size t IotcSendNotificationRequest::numKeyValues

5.2.34 IotcStringValue
IotcStringValue represents the string type metric data point.
Data Fields

e time t ts

e char value [IOTC METRIC STRING VALUE SIZE]

5.2.35 IotcTemplateld
IotcTemplateld represents the template identifier.

Data Fields
e char id [IOTC UUID SIZE]

©2024 SmartHub Inc. INFER™ API Reference Guide

Page 34

5 WRITING AN ADAPTER USING C SDK

5.2.36 IotcUploadFileRequest

IotcUploadFileRequest represents the Upload File request sent from the agent to the
server.

Data Fields
e File path at the local system to be uploaded:

char IotcUploadFileRequest::srcFilePath[PATH MAX]
e Path with the destination file name appended at end of the URL to upload the file:
char IotcUploadFileRequest::dstFilePath[PATH MAX]

5.2.37 IotcUserCredentials

IotcUserCredentials represents basic user credentials and organization domain name.
Data Fields
e char username [IOTC NAME MAX SIZE]

e char password [IOTC NAME MAX SIZE]

char orgDomainName [IOTC NAME MAX SIZE]

5.3 Functions

5.3.1 Iotc_AddMetricData

Adds metric data point in the metric data set.

API

int Iotc AddMetricData (
struct IotcMetricDataSet * metricDataSet,
IotcMetric * metric)

Description

Sort the list based on device IDs. This ensures that all the metrics belonging to the same
device are inserted from the device list when you fetch a device node.

Parameters

e Pointer to the metric data set:
metricDataSet[IN,OUT]

e Metric data to be sent to Agent:
metric
Returns

e 0 on success.

e -1 on failure.

5.3.2 Iotc_AllocatePropertySet

(Deprecated) Allocates memory for the property set to hold the size and the number of
properties.

API

int Iotc AllocatePropertySet (IotcPropertySet * properties, size t size)

©2024 SmartHub Inc. INFER™ API Reference Guide Page 35

5 WRITING AN ADAPTER USING C SDK

Parameters
e Pointer to the property set:
in, out properties
e Capacity of the property set in terms of number of properties:
in size
Returns

e 0 on success.

e -1 on failure.

5.3.3 Iotc_AllocMetricDataSet
Allocates memory for metric data set to hold metrics data points.
API

struct IotcMetricDataSet* Iotc AllocMetricDataSet (void)
Returns

Pointer to allocated metric data set structure on success, and NULL on failure.

5.3.4 Iotc_CampaignScheduleActivation

Schedules the campaign for activation.
API

int Iotc CampaignScheduleActivation (
IotcSession * session,

IotcCampaignId * campaignId,
IotcCampaignScheduleTimeWindow * timeWindow)
Description

Sends a request to the Server to schedule the campaign for activation. If the time window
is empty, it indicates that client is ready to activate the campaign. Otherwise, the supplied
time window is used by the server to schedule the campaign to activate for this gateway.

Parameters
e Connected session returned as part of Iotc Init call:
in session
e Campaign ID of the campaign that is scheduled for activation:
in campaignlId
e Schedule time window for the campaign to activate:
in timeWindow
Returns

0 on success.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 36

5 WRITING AN ADAPTER USING C SDK

5.3.5 Iotc_CampaignScheduleDownload
Schedules the campaign for download.
API

int Iotc CampaignScheduleDownload (
IotcSession * session,
TIotcCampaignId * campaignld,
IotcCampaignScheduleTimeWindow * timeWindow)
Description

Sends a request to the server to schedule the campaign for download. If the time window
is empty, it indicates that the client is ready for downloading the campaign. Otherwise,
the supplied time window is used by the server to schedule download of the campaign for
this gateway.

Parameters
e Connected session returned as part of Iotc_Init call:
in session
e Campaign ID of the campaign that is scheduled for download:
in campaignlId
e Schedule time window for the campaign to download:
in timeWindow
Returns

e 0 on success.

5.3.6 Iotc_CampaignScheduleExecution

Schedules the campaign for execution.
API

int Iotc CampaignScheduleDownload (
IotcSession * session,
TotcCampaignId * campaignIld,
IotcCampaignScheduleTimeWindow * timeWindow)
Description

Sends a request to the Server to schedule the campaign for running. If the time window is
empty, it indicates that client is ready to run the campaign. Otherwise, the supplied time
window is used by the server to schedule the campaign to run for this gateway.

Parameters

e Connected session returned as part of lotc_Init call:
in session

e Campaign ID of the campaign that is scheduled for running:
in campaignlId

e Schedule time window for the campaign to run:

in timeWindow

Returns

©2024 SmartHub Inc. INFER™ API Reference Guide Page 37

5 WRITING AN ADAPTER USING C SDK

e 0 on success.

5.3.7 Iotc_CampaignSetExecutionProgress
Updates the execution progress of the campaign.

API
int Iotc CampaignSetExecutionProgress (
IotcSession * session,
IotcCampaignId * campaignId,
const char * progress)
Description
Sends a request to the server to update the execution progress of the campaign.
Parameters

e Connected session returned as part of lotc_Init call:
in session
e Campaign identifier:
in campaignId
e Progress string to be sent to the server:
in progress
Returns

e 0 on success.

5.3.8 IotcCommandCb

The command callback function type.
API
typedef int IotcCommandCb (
const IotcCommand *command,
IotcCommandResponse *response,
void *context)
Parameters
e Command received from the server:
in
e Response data to be sent to the server for the command:
out

e context is the opaque context data that is supplied by the client during command
callback registration:

in
Returns
e 0 on success.

e -1 onerror.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 38

5 WRITING AN ADAPTER USING C SDK

5.3.9 Iotc_Close

Closes the communication channel with the IoTCAgent.
API
void Iotc Close (IotcSession * session)
Parameters

e Connected session returned as part of Iotc Init call:

in session

5.3.10 Iotc_DeletePropertySet

(Deprecated) Frees the memory used by the property set.
API
void Iotc DeletePropertySet (IotcPropertySet * properties)
Parameters
e Pointer to the property set:

in, out properties

5.3.11 Iotc_DeleteProperties
Frees the memory used by the properties.
API
void Iotc DeleteProperties (IotcKeyValueSet * properties)
Parameters
e Pointer to the property set:

in, out properties

5.3.12 Iotc_Enroll
Enrolls the gateway and generates a Gateway Identifier.
API
int Iotc Enroll (
IotcSession * iotcSession,
IotcEnrollmentRequest * enrollmentRequest)
Parameters
e Connected session returned as part of Iotc Init call:
in session
e Pointer to the enroll request object:
in requestData
e Contains the enroll response received for the request:
out responseData
Returns

e 0 on success.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 39

5 WRITING AN ADAPTER USING C SDK

5.3.13 Iotc_FreeMetricDataSet

Frees the metric data points in the metric data set. Mandatory if lotc AllocMetricDataSet()
is called.

API

void Iotc FreeMetricDataSet (struct IotcMetricDataSet * metricDataSet)

Parameters

e Pointer to the metric data set:
metricDataSet[IN]
Returns

e 0O on success.

e -1 on failure.

5.3.14 Iotc_GetCertificatelds

This function retrieves all the certificate Ids of the associated devices.
API
int Iotc GetCertificateIds(
IotcSession *iotcSession,
const IotcDeviceId *deviceld)
Description
Get all the certificate Ids associated with a device.
Parameters
e Current IotcSession to be used:
iotcSession
e Pointer to the device identifier of the device.
deviceld
Returns

e 0 on success.

e -1 on failure.

5.3.15 Iotc_GetCertificateIdsBylIssuer

This function retrieves all the certificate Ids associated with devices matching the specified
issuer.

API

int Iotc GetCertificateIdsByIssuer(
IotcSession *iotcSession,
const IotcDeviceId *deviceld,
const char *issuer)
Description
Get certificate ids associated with a device whose issuer entry matches the specified issuer.
Parameters

e Current IotcSession to be used:

©2024 SmartHub Inc. INFER™ API Reference Guide Page 40

5 WRITING AN ADAPTER USING C SDK

iotcSession
e Pointer to the device identifier of the device:
deviceld

e NULL terminated UTF-8 string. This string is matched against all the entries in a
certificate issuer(for example, Common Name, Organization Name). If one of the
entries completely matches this string, the certificate Id is included in the response.

issuer
Returns

e 0 on success.

e -1 on failure.

5.3.16 Iotc_GetCertificateIdsBySubject

This function retrieves all the certificate Ids of the associated devices matching the subject.
API

int Iotc GetCertificateIdsBySubject(
TotcSession *iotcSession,
const IotcDeviceld *deviceld,
const char *subject)
Description

Get certificate ids associated with a device whose subject entry matches the appropriate
subject.

Parameters

e Current IotcSession to be used:
iotcSession

e Pointer to the device identifier of the device:
deviceld

e NULL terminated UTF-8 string. This string is matched against all the entries in a
certificate subject(for example, Common Name, Organization Name). If one of the
entries fully matches this string, the certificate id is included in the response.

subject
Returns
e O on success.

e -1 on failure.

5.3.17 Iotc_GetCertificate

This function retrieves the certificate associated with a device.
API

int Iotc GetCertificate(
IotcSession *iotcSession,
const IotcDeviceld *deviceld,
const IotcCertificateId *certld,
const char *filePath)

©2024 SmartHub Inc. INFER™ API Reference Guide Page 41

5 WRITING AN ADAPTER USING C SDK

Description
Get private key as a PEM file. The PEM file is written to a specified file path.
Parameters
e Current IotcSession to be used:
iotcSession
e Pointer to the device identifier of the device:
deviceld
e Pointer to IotcCertificateld:
certId
e Path to which the certificate is written. Must be a full path.
filePath
Returns

e 0 on success.

e -1 on failure.

5.3.18 Iotc_GetPrivateKey

This function retrieves the private key.
API
int Iotc GetPrivateKey(
IotcSession *iotcSession,
const IotcDeviceId *deviceld,
const TotcCertificateId *certId,
const char *filePath)
Description
Get private key as a PEM file. The PEM file is written to a specified file path.
Parameters
e Current IotcSession to be used:
iotcSession
e Pointer to the device identifier of the device:
deviceld
e Pointer to IotcCertificateld:
certId
e The path to which the certificate is written. Must be a full path:
filePath
Returns

e 0 on success.

e -1 on failure.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 42

5 WRITING AN ADAPTER USING C SDK

5.3.19 Iotc_GetCommands

Gets commands available for this gateway device from the Server.
API

int Iotc GetData (
IotcSession * session,
TotcGetDataRequest * requestData)
Description

Sends a request to the server to check if there are any commands available for this gateway.
If the retrieved command data is for the agent, then the agent processes it. Any command
data that is not for the agent is returned to the client as response data.

Parameters

e Connected session returned as part of lotc_Init call:
in session
Returns

e 0 on success.

e -1 on failure.

5.3.20 Iotc_GetCustomProperties
(Deprecated) Retrieves the custom properties of the gateway device.

API
int Iotc GetCustomProperties (
IotcSession * iotcSession,
IotcDeviceld * deviceld)
Parameters
e Connected session returned as part of Iotc_Init call:
in iotcSession
e Device identifier:
in deviceld
Returns

e 0 on success.

e -1 on failure.

5.3.21 Iotc_FreeGetResponse

A general function to free internal resources used in a IotcGetResponse message.
API
void Iotc FreeGetResponse (IotcGetResponse * getResponse)
Parameters
e Pointer of the IotcGetResponse message:

getResponse

©2024 SmartHub Inc. INFER™ API Reference Guide Page 43

5 WRITING AN ADAPTER USING C SDK

5.3.22 Iotc_GetResponseByType

Processes response messages and returns only the desired message based on the message
type provided.

API
int Iotc_GetResponseByType (
IotcSession * session,
IotcGetResponseMsgType requestedType,
int timeout,
IotcGetResponse * getResponse)
Parameters
e Current IotcSession to be used:
in session
e Desired type of response message to be obtained:
in requestedType
e Duration to wait for a response from the agent, in milliseconds:
in timeout
e lotcGetResponse pointer for holding the result.
out getResponse
Returns

Returns -1 on failure. This value comes from the status of the response message or from
a communication error. To handle differences between these failures, check the returned
message type.

5.3.23 Iotc_Sync

This function synchronizes device related information such as default properties with the
server.

API

int Iotc Sync (IotcSession * iotcSession)

5.3.24 Iotc_GetDevices

(Deprecated) This function retrieves all the connected devices for a device using the ID
and type.

API
int Iotc GetDevices
Description

The devices would be returned with a pointer to IotcDeviceSet in the IotcGetResponse
with IOTC GET DEVICES as the response message type.

Parameters
e Current IotcSession to be used:
iotcSession
e Device ID for which the connected device IDs must be retrieved:

parentId

©2024 SmartHub Inc. INFER™ API Reference Guide Page 44

5 WRITING AN ADAPTER USING C SDK

5.3.25 Iotc_GetDevicesData

This function retrieves details such as device ID, device type, device name, template ID,
template name, enrollment state, parent ID, parent gateway ID, system properties, custom
properties and allowed metrics of all the connected devices of a device.

API

int Iotc GetDevicesData (
IotcSession * iotcSession,
IotcDeviceId * parentId)

Description

The devices are returned with a pointer to IotcDeviceDataSet in the IotcGetResponse with
IOTC GET DEVICES DATA as the response message type.

Parameters
e Current IotcSession to be used:
iotcSession
e Device ID for which the connected device IDs must be retrieved:

parentId

5.3.26 Iotc_GetMessageld

Returns the messageld corresponding to the latest API invoked by the client. Invoke
Iotc_GetMessageld before calling the next API.

API
uint64 t Iotc GetMessageId (IotcSession * iotcSession)
Parameters

e Connected session returned as part of Iotc Init call:

in iotcSession

5.3.27 Iotc_GetResponse

Gets response from the agent.

API

int Iotc GetResponse (
IotcSession * iotcSession,
IotcGetResponse * response)

Description

Returns GetData response to the Client. If the retrieved command data is for the agent,
then agent processes it. Any command data that is not for the agent is returned to the
client as response data.

Parameters

e Connected session returned as part of Iotc Init call:
in session

e Contains the response data received for the request:
out responseData

Returns

©2024 SmartHub Inc. INFER™ API Reference Guide Page 45

5 WRITING AN ADAPTER USING C SDK

e 0 on success.

e -1 on failure.

5.3.28 Iotc_GetSessionSockfd

(Deprecated) Retrieves the system properties of the gateway device.
API

int Iotc GetSystemProperties (
IotcSession * iotcSession,
TotcDeviceld * deviceld)

Parameters

e Connected session returned as part of lotc_Init call:

in iotcSession

e Device identifier.
in deviceld
Returns

e 0 on success.

e -1 on failure.

5.3.29 IotcSession* Iotc_Init

Initializes the communication channel with the IoTCAgent.
API
IotcSession* Iotc Init (IotcApplicationId * applicationId)
Parameters
e Application identifier of the invoking client:
in applicationId

Returns

Pointer to the session object on success or NULL on failure.

5.3.30 IotcSession*Iotc_InitWithConfig

Initializes a communication channel with the IoTCAgent using the supplied configuration.
API
IotcSession*Iotc InitWithConfig (IotcClientConfig * config)

Parameters

e Pointer to the client configuration object.
in config

Returns

Pointer to the session object on success or NULL on failure.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 46

5 WRITING AN ADAPTER USING C SDK

5.3.31 Iotc_InsertProperty

(Deprecated) Adds a property to the property set.
API

int Iotc InsertProperty (
IotcPropertySet * properties,
IotcProperty * property)

Parameters
e Pointer to the property set:
in, out properties
e Pointer to the property to be added:
in property
Returns
e 0 on success.

e -1 on failure.

5.3.32 Iotc_InsertProperties

Adds a property to the property set.
API

int Iotc InsertProperties (
TotcKeyValueSet * properties,
IotcKeyValue * property)

Parameters
e Pointer to the property set:
in, out properties
e Pointer to the property to be added:
in property
Returns
e 0 on success.

e -1 on failure.

5.3.33 Iotc_RegisterCampaignCallbacks
Registers campaign callback functions.
API

int Iotc RegisterCampaignCallbacks (
IotcSession * session,
IotcCampaignCallbacks * cbs,
void * userData)

Parameters

e Connected session returned as part of Iotc_Init call:

in session

©2024 SmartHub Inc. INFER™ API Reference Guide Page 47

5 WRITING AN ADAPTER USING C SDK

e Campaign callback functions collection that is invoked by the IoTCAgent during state
change, download progress, download, and so on:

in cbs

e User context data that is returned when invoking callback functions.
in userData
Returns

0 on success.

5.3.34 Iotc_RegisterCommandCallback
The command callback registration function.
API
int Iotc RegisterCommandCallback (
IotcSession * iotcSession,
IotcCommandCb * cb,
void * context)
Parameters
e Current IoTCSession to be used:
in IotcSession
e Command callback function:
in cb
e Pointer to any context data that must be supplied when cb is called:
in context
Returns

e 0 on success.

e -1 on error.

5.3.35 Iotc_SendMetric

Requests the agent to send a metric to the server.

API

int Iotc SendMetric (IotcSession * iotcSession, IotcMetric * requestData)
Parameters

e Connected session returned as part of lotc_Init call:

in iotcSession
e Pointer to the send metric request data:

in requestData

5.3.36 Iotc_SendMetricSet

Sends multiple metrics to the Agent to be sent to the server.
API

©2024 SmartHub Inc. INFER™ API Reference Guide Page 48

5 WRITING AN ADAPTER USING C SDK

int Iotc SendMetricSet (

IotcSession * iotcSession,

struct IotcMetricDataSet * metricDataSet)
Description

Use following helper functions to add metrics data:

e Totc MetricDataSet *Iotc AllocMetricDataSet(void);

e Totc AddMetricData(IotcMetricDataSet *metricDataSet, IotcMetric *metric);

5.3.37 Iotc_SendNotification

Sends the notification request to the server.
API

IotcSession * session, IotcSendNotificationRequest * requestData

Parameters
e Connected session returned from Iotc Init call:
in session
e Pointer to the notification request object:
in requestData
Returns

e 0 on success.

5.3.38 Iotc_SendPropertySet
Sends the property set to the server.
API
int Iotc SendPropertySet (
IotcSession * iotcSession,
IotcKeyValueSet * properties,
IotcDevicelId * deviceld)
Parameters
e Connected session returned from lotc Init call:
in iotcSession
e Pointer to the property set:
in properties
e Device identifier:
in deviceId
Returns

e 0 on success.

e -1 on failure.

©2024 SmartHub Inc. INFER™ API Reference Guide

Page 49

5 WRITING AN ADAPTER USING C SDK

5.3.39 Iotc_UnEnroll

Requests to un-enroll a device.

API

int Iotc UnEnroll (IotcSession * iotcSession, IotcDeviceld * deviceld)
Description

Sends a request to the Server to un-enroll the device specified by deviceld. If the deviceld
is empty, then the root gateway device is un-enrolled.

Parameters

e Connected session returned as part of lotc_Init call:
in session

e Pointer to the device identifier of the device:

in deviceld

5.3.40 Iotc_UploadFile

Uploads the specified file to the server.
API

int Iotc UploadFile (
IotcSession * session,
IotcUploadFileRequest * requestData)

Parameters
e Connected session returned as part of Iotc Init call:
in session
e Pointer to the post data request object:
in requestData
Returns

e O on success.

5.4 Macro Definitions

This section lists the macros and their definitions for the Agent APIs.
e Maximum size of the UUID:

#define IOTC_UUID SIZE 37

e Maximum size for a name string. Used in device names and in device property name-
value pairs:

#define IOTC_NAME MAX SIZE 256

e Maximum size for a value string. Used in device property name-value pairs:
#define IOTC VALUE MAX SIZE 512

e Maximum size of an application identifier:
#define IOTC APP_ID SIZE 65

e Maximum size for the payloads:

©2024 SmartHub Inc. INFER™ API Reference Guide Page 50

5 WRITING AN ADAPTER USING C SDK

#define IOTC PAYLOAD MAX SIZE 4096

e Maximum size of the metric name:
#define IOTC METRIC NAME SIZE 64

e Maximum size of the metric string data point:

#define IOTC_METRIC STRING VALUE SIZE 32

5.5 Enumeration Types

This section lists the enumeration types and their definitions for the Agent APIs.

5.5.1 enum lotcValType

Denotes the metric unit type.

{
BOOLEAN,
FLOAT,
STRING,
INTEGER
}

5.5.2 enum IotcCampaignState

Denotes the supported campaign states.

{
I0TC_CAMPAIGN INITIALIZED, IOTC CAMPAIGN INSTANTIATED,
IOTC_CAMPAIGN INVENTORY UP_TO DATE,
IOTC_CAMPAIGN INVENTORY UPDATE FAILURE,
IOTC_CAMPAIGN WAITING FOR DOWNLOAD APPROVAL,
IOTC_CAMPAIGN SCHEDULED DOWNLOAD, IOTC CAMPAIGN WAITING FOR DOWNLOAD,
IOTC_CAMPAIGN DOWNLOADING, IOTC CAMPAIGN DOWNLOAD COMPLETE,
I0OTC_CAMPAIGN DOWNLOAD FAILED,
IOTC_CAMPAIGN WAITING FOR EXECUTION APPROVAL,
IOTC_CAMPAIGN SCHEDULED EXECUTION, IOTC_CAMPAIGN WAITING TO EXECUTE,
IOTC_CAMPAIGN EXECUTING, IOTC_CAMPAIGN EXECUTION COMPLETE,
IOTC_CAMPAIGN EXECUTION FAILED,
IOTC_CAMPAIGN WAITING FOR ACTIVATION APPROVAL,
I0TC_CAMPAIGN SCHEDULED ACTIVATION, IOTC CAMPAIGN WAITING TO ACTIVATE,
IOTC_CAMPAIGN ACTIVATING, IOTC CAMPAIGN ACTIVATION COMPLETE,
IOTC_CAMPAIGN ACTIVATION FAILED

}

5.5.3 enum lIotcGetResponseMsgType

Denotes the supported response message types.

{
IOTC INVALID RESPONSE,

I0TC_NOTIFICATION RESPONSE,
I0OTC_ENROLL RESPONSE,
I0TC_UNENROLL RESPONSE,
IOTC_CAMPAIGN STATE CHANGE,
I0TC_SCHEDULE_RESPONSE,
I0TC_SET PROGRESS,

©2024 SmartHub Inc. INFER™ API Reference Guide Page 51

5 WRITING AN ADAPTER USING C SDK

I0TC_SEND METRIC,
IOTC _UPLOAD FILE,

IOTC_GET COMMANDS_ FINISHED,
I0TC_REGISTER CB,

I0TC_SEND PROPERTIES,
I0TC_GET SYSTEM PROPERTIES,
IOTC_GET CUSTOM PROPERTIES,
IOTC_GET DEVICES,

I0TC_GET DEVICES DATA,
IOTC_CLIENT COMMAND,
I0TC_ERROR RESPONSE,
IOTC_NO RESPONSE

5.5.4 enum lotcEnrollmentType

Denotes the supported enrollment types.

{
IOTC PRE REGISTERED,

IOTC_NOT_REGISTERED

5.5.5 enum boolean

Denotes the boolean state.

{
FALSE,

TRUE

5.5.6 enum IotcMetricType

Denotes the metric unit type.

{
IOTC METRIC ERROR,

IOTC_METRIC STRING,
IOTC_METRIC INTEGER,
IOTC METRIC FLOAT,

IOTC_METRIC_BOOLEAN,
IOTC_METRIC_UNKNOWN

5.5.7 enum IotcMetricResponseStatus

Status of the metric response sent from the Agent SDK.

I0TC_METRIC SUCCESS,

IOTC_METRIC FAILED: Metric failed to be stored at the agent or sent to the server.
IOTC_METRIC NOT ALLOWED: The metric is not in the allowed list.

IOTC METRIC STORED: The metric is successfully stored in the agent.
IOTC_METRIC SUCCESS: The metric is successfully sent to the server.

©2024 SmartHub Inc.

INFER™ API Reference Guide

Page 52

5 WRITING AN ADAPTER USING C SDK

I0TC_METRIC STORED,
IOTC_METRIC NOT ALLOWED,
IOTC_METRIC_FAILED

5.5.8 IotcClientLogLevel

Denotes the SDK client log levels.

{
IOTC_LOG_EMERG
IOTC_LOG ALERT
I0TC_LOG CRIT = 2,
IOTC_LOG_ERROR = 3,
IOTC_LOG_WARN
I0TC_LOG NOTIC
I0TC_LOG_INFO
I0TC_LOG DEBUG = 7

’

I}
= o

’

I m

4,
=5,
6,

5.5.9 enum lotcEnrollmentState

Supported device states.

5.6 Writing a Client Application using IoTCAgent SDK
To write a client application using the IoTCAgent SDK, perform the following steps.

1. Define an identifier for the client application:

IotcApplicationId clientAppld;
strncpy(clientAppId.id, "com.myclient", sizeof clientAppId.id);

2. Establish a session between the client application and IoTC Agent:

IotcSession *session;
session = Iotc Init(&clientAppId);
if (session == NULL) {

}

3. After establishing a session, the client can invoke other APIs to perform operations.

Currently, the IoTCAgent API works in an asynchronous mode. When an API is in-
voked, a request is sent to the IoTCAgent and the API returns to the client. Now, the
client invokes the Iotc_GetResponse() API to receive a response from the previously
invoked API. For example:

static int
EnrollGateway(IotcSession *session,
const char* templateName,
const char* gatewayName,
const char* username,
const char* password)

IotcEnrollmentRequest enrollmentRequest;
TotcGetResponse getResponse;
IotcEnrollmentResponse *resp;

©2024 SmartHub Inc. INFER™ API Reference Guide Page 53

5 WRITING AN ADAPTER USING C SDK

int status;

enrollmentRequest.data.type = IOTC NOT REGISTERED;
strncpy(enrollmentRequest.data.deviceDetails.deviceTemplate,
templateName,
sizeof enrollmentRequest.data.deviceDetails.deviceTemplate);
enrollmentRequest.data.deviceDetails.deviceTemplate
[sizeof enrollmentRequest.data.deviceDetails.deviceTemplate - 1] =
< '\0';
strncpy(enrollmentRequest.data.deviceDetails.name, gatewayName,
sizeof enrollmentRequest.data.deviceDetails.name);
enrollmentRequest.data.deviceDetails.name
[sizeof enrollmentRequest.data.deviceDetails.name - 1] = '\0';
strncpy(enrollmentRequest.userCredentials.username,
username,
sizeof enrollmentRequest.userCredentials.username);
enrollmentRequest.userCredentials.username

[sizeof enrollmentRequest.userCredentials.username - 1] = '\0';
strncpy(enrollmentRequest.userCredentials.password,
password,
sizeof enrollmentRequest.userCredentials.password);
enrollmentRequest.userCredentials.password
[sizeof enrollmentRequest.userCredentials.password - 1] = '\0';
if (Iotc Enroll(session, &enrollmentRequest) == -1) {
fprintf(stderr, "Failed sending enroll request\n");
return -1;
}
status = Iotc GetResponseByType(session, IOTC ENROLL RESPONSE,
CLIENT TIMEOUT, &getResponse);
if (status == -1) {
fprintf(stderr, "Enroll response failed for this client\n");
return -1;
}

resp = getResponse.response;

printf("Device Id: %s\nParent Device Id: %s\n",
resp->deviceld.id, resp->parentld.id);

printf("Status of enroll response: %d\n", status);

Iotc FreeGetResponse(&getResponse) ;
return 0;

}

4. To disconnect a client from the IoTCAgent, invoke the following API:

Iotc Close(session);

5.6.1 Sample MyClient Source Code

©2024 SmartHub Inc. INFER™ API Reference Guide Page 54

5 WRITING AN ADAPTER USING C SDK

#include <stdio.h>
#include <string.h>

#include "iotcAgent.h"

#define CLIENT TIMEOUT 30000

static int
EnrollGateway(IotcSession *session,
const char* templateName,
const char* gatewayName,
const char* username,
const char* password)

IotcEnrollmentRequest enrollmentRequest;
TotcGetResponse getResponse;
IotcEnrollmentResponse *resp;

int status;

enrollmentRequest.data.type = I0OTC NOT REGISTERED;
strncpy(enrollmentRequest.data.deviceDetails.deviceTemplate,
templateName,
sizeof enrollmentRequest.data.deviceDetails.deviceTemplate);
enrollmentRequest.data.deviceDetails.deviceTemplate
[sizeof enrollmentRequest.data.deviceDetails.deviceTemplate - 1] = '\0';
strncpy(enrollmentRequest.data.deviceDetails.name, gatewayName,
sizeof enrollmentRequest.data.deviceDetails.name);
enrollmentRequest.data.deviceDetails.name
[sizeof enrollmentRequest.data.deviceDetails.name - 1] = '\0';
strncpy(enrollmentRequest.userCredentials.username,
username,
sizeof enrollmentRequest.userCredentials.username);
enrollmentRequest.userCredentials.username
[sizeof enrollmentRequest.userCredentials.username - 1] = '\0';
strncpy(enrollmentRequest.userCredentials.password,
password,
sizeof enrollmentRequest.userCredentials.password);
enrollmentRequest.userCredentials.password
[sizeof enrollmentRequest.userCredentials.password - 1]

l\ol;

if (Iotc Enroll(session, &enrollmentRequest) == -1) {

©2024 SmartHub Inc. INFER™ API Reference Guide Page 55

5 WRITING AN ADAPTER USING C SDK

fprintf(stderr, "Failed sending enroll request\n");
return -1;

}

/* Invoke GetResponse by supplying type of response */
status = Iotc GetResponseByType(session, IOTC ENROLL RESPONSE,
CLIENT TIMEOUT, &getResponse);

if (status == -1) {
fprintf(stderr, "Enroll response failed for this client\n");
return -1;

}

/* 1f the GeResponse succeeded, fetch the response */

resp = getResponse.response;

printf("Device Id: %s\nParent Device Id: %s\n",
resp->deviceld.id, resp->parentId.id);

printf("Status of enroll response: %d\n", status);

/* Cleanup the memory used by the response object */

Iotc FreeGetResponse(&getResponse) ;
return 0O;

int main(int argc, char *argvl[])

{

IotcSession *session;

IotcApplicationId clientAppId;

const char *usage = "<template name> <gateway name> <username> <password>";

if (argc !=5) {
fprintf(stderr, "Usage:\n %s %s\n", argv[0], usage);
return 1;

}

strncpy(clientAppId.id, "com.myclient", sizeof clientAppId.id);

session = Iotc Init(&clientAppId);

if (session == NULL) {
/* Handle failure */
fprintf(stderr, "Could not initialize a session with iotc-agent\n");
return 1;

}

/* Invoke a iotc-agent sdk API
Note password is consumed as command line parameter for
keeping thus example program simple */

if (EnrollGateway(session, argv[1l], argv[2], argv[3], argv[4]) == -1) {
fprintf(stderr, "Enrollment failed\n");

}

/* Close the session */

Iotc Close(session);

return 0O;

}

©2024 SmartHub Inc. INFER™ API Reference Guide Page 56

5 WRITING AN ADAPTER USING C SDK

5.7 Building a Client that uses the IoTCAgent SDK

Use the following steps to build a client that uses the IoTCAgent SDK.
1. Extract the IoTCAgent SDK to a directory such as IOTC DIR=/opt/iotc-sdk.

2. Compile the client application by entering the include directory and the libraries
to link.

LD LIBRARY PATH=../lib gcc -o MyClient MyClient.c -I $IOTC
DIR/include/ -L $IOTC DIR/lib -liotc-agent-sdk

5.8 Running a Client that uses the IoTCAgent SDK

Clients using IoTC Agent SDK require the iotc group privilege or the root user
privilege.

To run a client program with a non-root user privilege, you must include the iotc group
in the supplemental groups and run the client program with the iotc group permission:

sudo usermod -a -G iotc $USER
sudo runuser $USER -G iotc -m -c "LD LIBRARY PATH=
/opt/smarthub/iotc-agent/lib ./MyClient"

5.9 Working with DefaultClient

The IoTC Agent CLI is IoTC Agent’s default client binary DefaultClient . On Windows,
this tool is available as DefaultClient.exe

This tool provides a command-line interface (CLI) to perform IoTC Agent SDK operations.
With the IoTC Agent CLI tool, you can build a client that operates with SmartHub INFER

IoT Center using the IoTC Agent SDK. You can use the DefaultClient binary as a refer-
ence for building your client.

The IoTC Agent CLI provides multiple CLI options. Please run the following command to
know more.

/opt/smarthub/iotc-agent/bin# ./DefaultClient help

Use the IoTC Agent CLI to perform operations such as enrolling a device and setting
properties for a device quickly.

Note:

Declare the library path explicitly if you see error messages such as:

error while loading shared libraries: libiotc-agent-sdk.so:
cannot open shared object file: No such file or directory .

Run the following command:
export LD LIBRARY PATH=$LD LIBRARY PATH:/opt/smarthub/iotc-agent/lib/

The IoTC Agent CLI is available in the bin directory of IoTC Agent:
/opt/smarthub/iotc-agent/bin/DefaultClient

For more information on DefaultClient, see DefaultClient in IoTCAgent Package.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 57

5 WRITING AN ADAPTER USING C SDK

5.10 Using DefaultClient Daemon

You can run the DefaultClient binary file as a daemon process in the background. In

the daemon mode, DefaultClient connects to the IoTC Agent daemon and authorizes
campaign call-backs automatically.

It also fetches commands from the server at regular intervals. When additional options

are specified, DefaultClient gathers the default CPU and Memory Usage metrics from
the Gateway device and sends them periodically. You can perform the following operations

using the DefaultClient daemon:
e Start the DefaultClient daemon without sending the default metrics:
$ DefaultClient start-daemon

e Start the DefaultClient daemon with default metrics every 10 minutes:

$ DefaultClient start-daemon --device-id=<device id> --interval=600

e Stop the DefaultClient daemon.
$ DefaultClient stop-daemon

Using the IoTC Agent connection, the DefaultClient daemon accepts requests from the
following pipe files if necessary:

e /tmp/iotc-defclient/input for an input request.
e /tmp/iotc-defclient/output for an output request.

The following sample illustrates how to get system properties using the DefaultClient
daemon:

$ echo "get-properties --device-id=13c425el-873a-
43f0-a529-cb05289a8a40 --type=system" > /
tmp/iotc-defclient/input

$ cat /tmp/iotc-defclient/output

To see a sample workflow that shows how to get system properties using the
DefaultClient daemon, see Send Metrics API Example.

©2024 SmartHub Inc. INFER™ API Reference Guide Page 58

	Introduction
	APIs
	Headers
	API Version
	Authentication
	Organizations
	Device Authentication
	Restricted Characters

	Server APIs
	Swagger Console
	Using the Server APIs
	Server API Types

	Edge APIs - Python SDK
	Python SDK
	Supported Operations
	Best Practices

	Running Campaigns using Agent SDK
	Running a Campaign using Default Properties
	Running a Campaign in On-Demand Mode
	Running a Campaign in Headless Mode
	Approving the OTA Update Phases

	Writing an Adapter using C SDK
	DefaultClient in IoTCAgent Package
	Data Structures
	Functions
	Macro Definitions
	Enumeration Types
	Writing a Client Application using IoTCAgent SDK
	Building a Client that uses the IoTCAgent SDK
	Running a Client that uses the IoTCAgent SDK
	Working with DefaultClient
	Using DefaultClient Daemon

